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Abstract 

We generalize a recent analysis by Albrecht and Brandenberger 

regarding the realization of inflation. In particular, we are concerned 

with general potentials for an SU(5) singlet scalar field (the lnflaton) 

which may or may not possess non-renormalizable interactions. 
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The attractiveness of an inflationary’) period in the early 

Universe has sparked the production of a great number of models’) and 

recently some questions3) as to whether inflation is cosmologically 

feasible. The basic idea behind the new inflationary scenario’l) is that 

if the potential describing the self-interactions of a scalar field @, 

is sufficiently flat at say $ I 0 and if the high temperature potential 

has a minimum at $ = 0 then inflation will occur during the slow 

roll-over from $7 ii 0 to the global minimum at $ = v, at the same time 

producing density fluctuations 6p/p - 10e4. 

In the original new inflationary models’) of the Coleman-Weinberg 

type, the minimum at high temperature is at $ = 0. In more general 

models, this is not guaranteed and must be imposed as an additional 

constraint.5) Indeed in models of inflation in the context of minimal 

N=l supergravity6)p7) it was showna) that this constraint could not be 

satisfied using a single chiral superfield. However if one employs N=l 

supergravity with non-minimal kinetic terms one can satisfy this 

constraint’) and in particular a very simple model is found”) in the 

context of SU(n.1) supergravity theories “) which may naturally fall out 

of certain superstring theories. “) In what follows we shall assume that 

this condition has been imposed and is satisfied by the scalar potential 

V(O). 

These same thermal effects which supply a high temperature minimum 

at $ = 0 have been held suspect 3) In that at high temperatures, the 

field is not expected to be localized about that minimum but rather 

fluctuate out to distances $ - T. Thus at high temperatures T > Tc, 

where T c is the critical temperature for the phase transition, domains 
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will form with $ = v and in those regions where $ = 0, kinetic energy 

terms will dominate the Lagrangian over the potential energy. In a 

response to these questions, Albrecht and Brandenberger,‘3) have 

determined conditions under which the standard inflationary scenario 

follows. In particular they looked at a Coleman-Weinberg potential and 

a simple o4 potential. In this letter, we will generalize their results 

for an arbitrary scalar potential of the form 

V(O) =c A,$” 
n 

(1) 

where the non-renormalizable terms (n>4) are expected to be cut off by 

inverse powers of the Planck mass Mp = 1.2 k 10’9 GeV, (e.g. when they 

arise in supergravity theories) so that below M 
P’ we can treat this as 

an effective theory. Our results confirm their conclusion that 

primordial inflation14) is preferred. 

In ref. 13, Albrecht and Brandenberger have shown that if one could 

neglect the scalar self interactions, the redshifting of the spatial 

gradient and kinetic terms allow the Universe to enter an inflationary 

period. In fact it is only the interaction terms which present 

difficulties of the type in ref. 3. Thus if one can show that 

interactions remain negligible for a timescale sufficient for inflation 

to solve the cosmological problems, the problems of ref. 3 are not 

realized. 

Wherever possible, we will use the notation of ref. 13. We start 

by considering a pure scalar theory whose self interactions are 

described by the potential given by eq. (1). For V(e) to be suitable 



for inflation we must have a flat potential so that the energy density 

becomes dominated by V(O). During inflation, the Robertson-Walker 

metric 

ds2 = -dt* + a*(t) ds2 (2) 

will have the de Sitter-like behavior a(t) - aoeHt with H2 = &rV(0)/3M;. 

We can rewrite eq. 2 in terms of a conformal time q 

ds2 = -az(n)(dn2 - djt*) (3) 

with a’(n) = (Hn)-2 and n = -eTHt/H. We can expand15) $ in terms of its 

normal modes 

ld3k qk(deiksX + h.c. 

The equation of motion for the qkla is 

Pk - 2n-‘qlk + k2qk = I (5) 

and 

(4) 

1 =En,i 
1 

n n C2,j3(n-1)/2 Jd3k1*‘*d3kn-2qk,‘*qkn-2qk-k,-...-kn-2 (6) 
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where the prime refers to a derivative with respect to n and I is due to 

the interactions derived from aV/a$. 

If we for the moment neglect interactions (I=O) then we can 

solve’5) -4. 5 for qk(n), 

qk(n) = d,n3’2H$1+kn) + d2,,3’2 Ht2+kn) (7) 

where Hi1)p(2) are the Hankel functions of the first and second kinds of 

order V. For a scalar field which is not coupled to curvature, the index 

v = 3/2 in the massless limit (Inflationary cosmology requires that 

m<<H). We can write the solutions of qk ee 

(‘I = c ‘k 1 (k-3’2sin(kn) - k-1’2q cos(kn)) 

(2) = -c 

qk 2 Ck 
-312 cos(kn) + k-“‘q sin(kq)) 

(8a) 

(8b) 

and c 1’ c2 are typically of order H. 

If the interactions are small we can treat them as a perturbation 

and calculate the perturbed solution following ref. 13 

q;(n) = -qL2+rl) 1” dTI(T)e(T)q(%) + k (1++2) 
-1 /H 

where 

‘(1) (2) E(T)) = (4, qk _ q(l) ‘(2)1-l 
k qk 

2 -1 = (c,c211 1 

(9) 

(10) 
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(At late times, at the end of inflation, when kq<<l only the first term 

in eq. (9) contributes.) We begin the evaluation of the integral in 

equation (9) by finding an upper bound for the interaction term I from 

eq. (6). To estimate I, we take for upper and lower bounds in the 

integral H<k<T 
C’ i.e. k is limited by the horizon size and the 

temperature at the onset of inflation. For k in this range, 

(qkl 5 k-1’2 (see eq. (8)). Substituting qk = k-1’2 in I and using the 

random phase approximation we find that I must satisfy the following 

inequality 

1 < 1 & 1X,( Tz-5’2 = I 
n (2~)~ max 

The perturbed solution qt is then bounded by 

q;i < q;2)c,,j Imax [” dTh;‘+d dT 
-l/H 

(1') 

(12) 

The perturbed solution for qi will remain valid so long as qi 5 qk (l).(2) 

for a typical value of qk2) - H/Tz’2 at late times. Thus we have our 

condition on the source term and hence the couplings An, 

1 
filA,l 

Tn-ll_< (;) 
n (2~)” ’ 

(13) 



This is the generalization of the result in ref. 13. Given a scalar 

potential V suitable for inflation, eq. (13) becomes the requirement 

that inflation actually takes place. If eq. (13) is not satisfied, the 

interaction terms become important too soon and the problems discussed 

in ref. 3 become serious. 

It is now relatively straightforward to see that eq. (13) implies 

the preference for primordial inflation in connection with the n 2 4 

terms. Recall that primordial inflation is characterized by a large 

symmetry breaking expectation value v compared with the critical 

temperature Tc - V(o)“4 - (HM~)~/~ (v>>Tc) whereas Coleman-Weinberg 

type inflation has v - T c. For very flat potentials (hl=h2=O), the high 

temperature potential takes the form 

VT = A0 + x3$ + 

Hence our bound (eq. (13)) then imposes the following constraints on the 

couplings Ai. Starting with the cubic term we see that 

(15) 

The quartic coupling is bounded by 

A4 < (WC) (16) 

This result differs from that in ref. 13 in the power of H/T. Finally, 
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for n 2 4., if we suppose that these couplings are cut off by powers of 

", the global minimum for 0, <e> = v, so that A - n = A," 4-n, eq. (13) 

becomes 

r&n p>“” 5 ; (18) 

Clearly for v>>Tc, the constraints on In become much less severe. 

In conclusion, we have solved for the criteria that inflation 

occurs for general scalar potentials whose T-O form satisfies the 

ordinary inflationary constraints. 16) 
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